Polyploidy and interspecific hybridisation: partners for adaptation, speciation and evolution in plants

Fig1PolyploidyAlixEtAl.jpg337. Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JS. 2017. Polyploidy and interspecific hybridisation: partners for adaptation, speciation and evolution in plants. Annals of Botany 120: 183–194. https://dx.doi.org/10.1093/aob/mcx079 (freely available)

Author version (free to post) to come. Figure 1 showing polyploidy or WGD whole genome duplication events in plant evolution is here AlixEtAlPolyploidyInPlantEvolution (Powerpoint format)

  • Background. Polyploidy or whole genome duplication is now recognized as being present in almost all lineages of higher plants, with multiple rounds of polyploidy occurring in most extant species. The ancient evolutionary events have been identified through genome sequence analysis, while recent hybridisation events are found in about half of the world’s crops and wild species. Building from this new paradigm for understanding plant evolution, the papers in this Special Issue address questions about polyploidy in ecology, adaptation, reproduction and speciation of wild and cultivated plants from diverse ecosystems. Other papers, including this article, consider genomic aspects of polyploidy.
  • Discovery of the evolutionary consequences of new, evolutionarily recent, and ancient polyploidy requires a range of approaches. Large scale studies of both single species, and whole ecosystems, with hundreds to tens of thousands of individuals, sometimes involving ‘garden’ or transplant experiments are important for studying adaptation. Molecular studies of genomes are needed to measure diversity in genotypes, showing ancestors, the nature and number of polyploidy and backcross events that have occurred, and allowing analysis of gene expression and transposable element activation. Speciation events and the impact of reticulate evolution, require comprehensive phylogenetic analyses and can be assisted by resynthesis of hybrids. In this Special Issue, we include studies ranging in scope from experimental and genomic, through ecological to more theoretical.
  • Conclusions: The success of polyploidy, driving out the diploid ancestors of almost all plants, is well illustrated by the huge angiosperm diversity that is assumed to originate from recurrent polyploidisation events. Strikingly, polyploidisation often occurred prior to or simultaneously with major evolutionary transitions and adaptive radiation of species, supporting that concept that polyploidy plays a predominant role in bursts of adaptive speciation. Polyploidy results in immediate genetic redundancy and represents, with the emergence of new gene functions, an important source of novelty. Along with recombination, gene mutation, transposon activity and chromosomal rearrangement, polyploidy and whole genome duplication act as a driver of evolution and divergence in plant behaviour and gene function, enabling diversification, speciation and hence plant evolution.

 

Keywords: Polyploidy, hybrids, ecology, adaptation, evolution, genomics, chromosomes, speciation, whole genome duplication (WGD), crops, weeds, phylogeny, bryophytes, angiosperms

337. Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JS. 2017. Polyploidy and interspecific hybridisation: partners for adaptation, speciation and evolution in plants. Annals of Botany 120: 183–194. https://dx.doi.org/10.1093/aob/mcx079

Advertisements

About Pat Heslop-Harrison

Professor of Molecular Cytogenetics and Cell Biology, University of Leicester Chief Editor, Annals of Botany. Research: genome evolution, breeding and biodiversity in agricultural species; the impact of agriculture; evalutation of research and advanced training.
This entry was posted in Brassica, cereals, Crocus, Musa, Publications, Species, Uncategorized, wheat and tagged , , , , , , , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s