Plant Virus Evolution and Pararetroviruses in Petunia

Plant Pararetrovirus insertions on chromosomes seen on the cover of "Plant Virus Evolution" book

Plant Pararetrovirus insertions on chromosomes seen on the cover of “Plant Virus Evolution” book

TS. Hohn T, Richert-Pöggeler KR, Staginnus C, Harper G, Schwarzacher T, Teo CH, Teycheney P-Y, Iskra-Caruana M-L, Hull R. 2008. Evolution of Integrated Plant Viruses. Chapter 4 pp 53-81. In: Plant Virus Evolution Ed Roossinck MJ. Springer: Berlin

Link to Publisher homepage about the book with links to downloadable copies of the whole book or the chapter.

(Freely downloadable direct links do not seem to work except via the page above: PRV Pararetrovirus chapter or as the whole book”Plant Virus Evolution” 4Mb.)

This volume has just become free on-line. Despite being 7 years old, it had enough genomic information that the pararetrovirus (EPRV Endogenous Para Retro Virus) chapter is still current in 2015. It also foreshadowed the Journal papers linked via Google Scholar at the bottom of this page.

Plant pararetroviruses replicate their genome via a transcription–reverse transcription cycle like retroviruses, but unlike them their genomes do not obligatorily integrate into the host chromatin. Nevertheless, one can find complete or fragmented pararetrovirus PRV EPRV genomes, as well as those from geminiviruses and even RNA viruses incorporated into the genomes of nearly all plants analysed. Integration events are thought to be rare and even rarer are those that find their way into the germ line. Normally, these integrated viral sequences are incomplete, rearranged and mutated and cannot easily escape as active viruses. However, in some cases apparently more recently acquired and therefore less initiated integrates can escape by direct transcription from tandem insertions or by recombination. This can lead to severe outbreaks in crop and ornamental plants. In anticipation of such events, methods have been developed for the detection and characterization of integrated virus sequences in plant genomes.

See more recent journal articles on PRVs EPRVs relating to the work overviewed in this chapter

[HTML] Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species

…, MLC Machado, M Matzke, T Schwarzacher – BMC plant …, 2007 – biomedcentral.com
How Teo 4 , Eduviges Glenda Borroto-Fernández 5 , Margit Laimer da Câmara Machado 5 , Although EPRVs are being detected in an increasing number of plant species, the detailed structure of individual EPRV integrants and
 

Fluorescent in situ hybridization to detect transgene integration into plant genomes

T Schwarzacher – Transgenic Wheat, Barley and Oats, 2009 – Springer
Wild Petunia metaphase chromosomes (2 n = 14) after FISH with an endogenous pararetrovirus, EPRV probe (labelled with biotin d-UTP and detected with streptavidin conju- gated to Alexa594, red fluorescence under green excitation (for probe description ..
 

Impact of Retroelements in Shaping the Petunia Genome

KR Richert-Pöggeler, T Schwarzacher – Petunia, 2009 – Springer .. Evidence accumulated so far indicates that integration of EPRV into the plant genome does not occur actively but as a by  form higher-order repetitive DNA structures that are amplified by mechanisms of repetitive sequence amplification
 

.

 

 

 

.

adverts below not associated.

Advertisements

About Pat Heslop-Harrison

Professor of Molecular Cytogenetics and Cell Biology, University of Leicester Chief Editor, Annals of Botany. Research: genome evolution, breeding and biodiversity in agricultural species; the impact of agriculture; evalutation of research and advanced training.
This entry was posted in Publications and tagged , , , , , , , , , , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s